AP Chemistry Summer Assignment

Hello and welcome to AP Chemistry.

The following assignment will be a helpful review for a few topics learned in chem 1.

You *Must* learn the common polyatomic ions and solubility rules provided on the next page.

The attached assignment covers chapter 1, 2 and part of chapter 3.

On my school website look in the folder labelled <u>Summer Review Material Webpage</u>. It contains screencasts that will help with the summer assignment. Other helpful sites;

- http://www.mychemistrytutor.com
- > http://www.chemmybear.com/groves/apchem.html
- > http://www.bozemanscience.com/ap-chemistry/

When you return in September there will be an exam on: Mole Conversion (excluding gas volume)

Polyatomic ions

Solubility Rules

Naming Chemical Formulas

Email me if any questions arise.

Dr. C

Selected Polyatomic Ions

	Colocted Folyatonne 10tis				
Formula	Name		Formula	Name	
H ₃ O+	hydronium		CrO ₄ ² -	chromate.	
Hg ₂ ²⁺	mercury(I)		Cr ₂ O ₇ ² -	dichromate	
NH ₄ +	ammonium		MnO_4^-	permanganate	
C ₂ H ₃ O ₂ -	acetate		NO ₂ -	nitrite	
CH ₃ COO-		\prod	NO ₃ -	nitrate	
CN-	cyanide	$\ \cdot \ $	O ₂ ² -	peroxide	
CO ₃ 2-	carbonate]}		-~	
HCO ₃ -	hydrogen		OH-	hydroxide	
	carbonate		PO ₄ .	phosphate	
C ₂ O ₄ ² -	oxalate		SCN-	thiocyanate	
ClO-	hypochlorite		SO ₃ 2-	sulfite	
ClO ₂ -	chlorite		SO ₄ ² -	sulfate	
ClO ₃ -	chlorate		HSO ₄ -	hydrogen sulfate	
ClO ₄ -	perchlorate		S ₂ O ₃ ² -	thiosulfate ,	

Solubility Rules

The following are always soluble with anything

Group I metals
Ammonium NH4*
Nitrate NO3*
Acetate C₂H₃O₂*
Hydrogen carbonate HCO3*
Chlorate ClO3*

Partial solubility- the following are soluble with everything except

The folloing are solube with Group I metals, NH₄+ and...

Halides (CIT, Br., IT)

Ag⁺, Pb²⁺, Hg₂²⁺

Hydroxides (OH) - Seniors bake cakes ${\rm Sr}^{2^+}$ ${\rm Ba}^{2^+}$ ${\rm Ca}^{2^+}$

Sulfates (SO₄2-) - Hungry seniors always bake peanut butter cakes

Chromate(CrO₄²) - Make cakes

Hg₂²⁺ Sr²⁺ Ag⁺ Pb²⁺

Mg²⁺ Ca²⁺

Mole Conversions

1 Mole = Formula Mass (g) = 6.02 x 10²³ molecules, atoms, particles = 22.4 L of gas @ STP (AKA Molar Mass)

Please Define the Following (primarily chapter 1)
Pure substance
Element
Dienent
Compound
Y of Constant Consocition
Law of Constant Composition
Law of Definite Proportions
Physical Property
Chemical Property
Physical Change
1 Hysical Change
Chemical Change`

- Use factor labeling method to convert the following: 1.
 - a. 50.0mL = ____ liters.

? L = 50.0 mL x $\frac{1 L}{1000 \text{ mL}}$ = 0.0500 L (to 3 significant figures)

- b. 650 in = ____ meters
- c. 4 years= _____ seconds.
- d. 200 liters = ____ ml
- 2. Classify each of the following as units of mass, volume, length, density, energy, or pressure.
 - a.Kg
- b. Liter
- c. m³
- d. mm
- e, kg/m³

- f, Joule g. atm h. cal

- i.Torr
- J. g/ml
- 3. Most laboratory experiments are performed at room temperature at 25°C. Express this temperature in:
 - a. °F
 - b. K
- 4. How many significant figures are in each of the following?
 - a. 1.9200 mm
- b. 0.0301001 kJ c. 6.022 x10²³ atoms
- d. 460.000 L e. 0.000036 cm³ f. 10000
- g. 1001 h. 0.001345
- i. i.0.0101
- J. 3.02×10^4 k. 3.21×10^{-2}

5.	Write the number 1200 three ways: to 2, 3, and 4 significant figures
6.	Record the following in correct scientific notation: a. $4,050,000,000$ cal 4.05×10^9 cal
	b. 0.000123 mol
	c. 0.00345 Å
	d. 700,000,000 atoms
7.	Calculate the following to the correct number of significant figures.
	a. 1.270 g / 5.296 cm ³
	b. 12.235 g / 1.010 L
	c. 12 g + 0.38 g
	d. 170g + 2.785 g
	e. 2.1 x 3.2102
	f. 200.1 x 120
	g. 17.6 + 2.838 + 2.3 + 200.
8.	A cylinder rod formed from silicon is 46.0 cm long and has a mass of 3.00 kg. The density of silicon is 2.33 g/cm 3 . What is the diameter of the cylinder? (the volume of cylinder is given by V= $\prod r^2h$, where r is the radius and h is the length)
9.	Give the chemical symbols for the following elements: a. Carbon b. sulfur c. Titanium d. Nitrogen e. Helium
	f. Krypton g. Fluorine h. Scandium I. Arsenic J. Potassium
	k. Sodium I. chloride m. Iron n. Zinc

	cm ³ . When filled with gas, the mass of the container + gas lone is 836.2 g. To the correct number of significant D=m/v
•	re substances or mixtures. If an item is a mixture, specify if
it is heterogeneous or homogeneous. (a) concrete	(e) air
(b) seawater	(f) tomato juice
(c) magnesium	(g) iodine crystals
(d) gasoline	(h) a nickel
12. How would you separate a mixture of size?	granulated sugar and beach sand of comparable grain
 Label each of the following as either a Corrosion of aluminum metal. 	
	g. Burning of paper.
b. Melting of ice.	
b. Melting of ice.c. Pulverizing an aspirin.	h. Forming of frost on a cold night.
	h. Forming of frost on a cold night. i. Bleaching of hair with H_2O_2 .

14.	A solid white substance A is heated strongly in the absence of air. It decomposes to form a new white solid substance B and a gas C. The gas has exactly the same properties as the product obtained when carbon is burned with excess oxygen. What can you say about whether solids A and B and the gas C are elements or compounds?				
15.	observation: The substance is intense white light. It reacts v	s a silvery white, lustro with chlorine to give a down into wires. It is a	tance, a chemist makes the following bus metal. It burns in air, producing an brittle white solid. The substance can be good conductor of electricity. Which of th properties?	ese	
16.	Why do we call Ba(NO₃)₂ bari	um nitrate, but we cal	l Fe(NO₃)₂ iron(II) nitrate?		
17.	Write the formula of the follo a. Calcium sulfate.	- '	oogle → "formula writing") ate c. Lithium Nitrite		
	d. potassium perchlorate.	e. Barium Oxide	f. Zinc sulfide.		
	g. Sodium Perbromate	I. Calcium lodide	J. Aluminum Carbonate		
18. a.to		actor-labeling method	(google → "pressure conversions")		
b.	kilopascals				
c.	mm of Hg				

Define the following (primarily Chap 2)	
Dalton	
Thomson	
Millikan	
Becquerel	
Curie	
Chadwick	
Atomic number	
Atomic mass	
Average atomic (isotopic) mass	
Mass spectrometer	
Structural formula	

How many grams of methane (CH₄) are present in 5.6 moles of methane gas? (Use the factor labeling method)

19.	19. Nitrogen (atomic mass=14.00674) has two isotopes, N-14 and N-15, with atomic masses of 14.00031 amu and 15.001 amu, respectively. What is the percent abundance of N-15? (google→ "atomic mass isotope abundance")					
	-					
20.	Write the number of protor	s and electro	ns?			
		Protons	Neutrons	Electrons		
	a P ₄ molecule				_	
	b. a PCl ₅ molecule					
	c. a P ³⁻ lon					
	d. P ⁵⁺ ion					
21.	Mercury has an atomic mas a. Mass of 3.0 x 10 ¹⁰ ato		nu. Calculate the			
	b. Number of atoms in o	one nanogram	of Mercury			
22.	Calculate the molar masses a.Ammonia (NH ₃)	(g/mol) of				
	b. Baking soda (NaHCO₃)					
	c. Osmium Metal (Os)					

23. List the following has diatomic molecule, molecular compound, ionic compound, ato				
	element.			
	a. F ₂	f. CO ₂	k. O₂	
	b. Cl ₂	g. H₂	l. l ₂	
	c. C	h. Ag	m.CO	
	d. NaCl	i. Rust (Fe₂O₃)	n. K₂CO₃	
	e. KF	j. MgO		
	=	y that typically contains 45.0% by mass govailable, how many grams of platinum ar y?		
	25. What is the empirica (Google → "empirical	l formula of a compound that contains 5: formula percent ")	3.73% Fe and 46.27% of S ?	
		per of molecules present in 4.56 mol of ni	trogen (N₂).	
	(Google → "mole conv Atoms?	rersions ")		

 27. A hydrated compound has an analysis of 18.29% Ca, 32.37% Cl, and 49.34% water. What is its formula? (Google→ "percent empirical formula")
28. Name the 4 types of general inorganic reactions with example of each?
29. Define Acid, base and salt? Give two examples of each.
Acid-
Base-
Salt-

,	The hormon	ne, thyroxine is secreted by the thyroid gland, and has the formula: $C_{15}H_{17}NO_4I_4$. How rams of lodine can be extracted from 15.0 Grams of thyroxine? (hintmass% I)
:		
31.		the formula weight (aka molar mass) for the following: $N_2 O_5$
	b.	CuSO ₄
	c.	Ca(HCO ₃) ₂
	d.	CaSO ₄ •2H ₂ O
32.	Determine t	he empirical formula of the compounds with the following compositions by mass:
	a.	10.4 % C, 27.8% S , 61.7 % Cl

b. 21.7 % C, 9.6 % O, and 68.7 % F

33. Common Polyatomic Ions (Please provide in the following)

Name	Formula with charge	Name	Formula with charge
a) Acetate		b) Ammonium	
c) Carbonate		d) Chlorate	
e) Chlorite		f) Chromate	
g) Cyanide		h) Dichromate	
i) Dihydrogen Phosphate		j) Dihydrogen Phosphate	
k) Hydrogen Carbonate		l) Hydrogen Sulfate	
m) Hydrogen Sulfite		n) Hypochlorite	
o) Hydroxide		p) Nitrate	
q) Nitrite		r) Oxalate	
s) Perchlorate		t) Permanganate	
u) Perioxide		v) Phosphate	
w) Sulfate		x) Sulfite	
y) Thiosulfate			

34	Common Acids	Formula	Common Acids	<u>Formula</u>
	Hydrochloric Acid		Phosphoric acid	
	Perchloric acid		Periodic Acid	
	Carbonic acid		Sulfurous Acid	
	Nitrous acid		Sulfuric Acid	
	Nitric Acid		Hypochlorous Acid	
	Chlorous Acid		Chloric Acid	

35.	loi	n Name	Symbol with charge				
	a)	Sodium					
	b)	Potassium					
	c)	Cesium					
	d)	Beryllium					
	e)	Calcium					
	f)	Strontium					
	g)	Barium					
	h)	Gallium					
	i)	Aluminum					
		Nitrogen					
	•	Arsenic					
	I)	Bismuth					
		Oxygen					
	•	Fluorine					
	-	Chlorine					
		Bromine Iodine					
	ч <i>і</i>	tourie					
36.	on I	Common ions of trar Vame	nsition elements Ion				
a) Chromium(III)							
b) N	b) Manganese(II)						
c) Iro	c) Iron(II)						
d) Ir	d) Iron(III)						
e) Co	e) Cobalt(II)						
f) Ni	f) Nickel(II)						
g) Co	g) Copper(II)						
h) Zi	h) Zinc						
i) Sil	i) Silver						
j) Ca	j) Cadmium						
k) M	k) Mercury(II)						

37	.One way to remove	Nitrogen Oxide (N	O) from smokestack	emissions is to rea	act it with ammonia:
-,	•	•	•		

$$4 \text{ NH}_3 \text{ (g)} + 6 \text{ NO (g)} \longrightarrow 5 \text{ N}_2 \text{ (g)} + 6 \text{ H}_2 \text{O (I)}$$

a. 12.3 mol of NO reacts with _____ mol of ammonia

b. 5.87 mol NO yields _____ mol nitrogen.

- 38. Name the following covalent compounds:
 - a. CO₂

f. SF₆

b. P₄S₁₀

g. CH₄

c. NI₃

h. C₂H₆

d. PCl₅

i. C₃H₈

- e. CCl₄
- 39. Define Oxidation number.

Find the Oxidation number of

a.Carbon in CO₂

c.Phosphorus in PO₄³

b.Sulfur in H₂SO₄

d.Manganese in MnO₄²⁻

40. What mass of copper is required to replace silver from 4.00g of silver nitrate dissolved in water?

(Google \Rightarrow "stoichiometry ")

___Cu(s) + ___AgNO₃ \Rightarrow ___Cu(NO₃)₂ + ___Ag

41. Write the chemical formulas for the following compounds:

- a. Calcium Carbonate
- b. Ammonium Phosphate
- c. Sodium Chloride
- d. Sodium Oxide
- e. Calcium Sulfate
- f. Sodium Nitrite

- g. Magnesium Acetate
- h. Potassium cyanide
- i. Zinc(II) Nitrate
- j. Iron(III) Phosphate
- k. Nickel (II) Fluoride

b. Law of multiple proportion

42. Strontium consists of four isotopes with masses and their percent abundance of 83.9134 amu (0.5%), 85.9094 amu (9.9%), 86.9089 amu (7.0 %), and 87.9056 amu (82.6 %). Calculate the atomic mass of Sr ? (Google → "atomic mass calculation")